Penalty Dynamic Programming Algorithm for Dim Targets Detection in Sensor Systems

نویسندگان

  • Dayu Huang
  • Anke Xue
  • Yunfei Guo
چکیده

In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Nonlinear Filtering Methods for Detection of Dim Targets by Passive Systems

In this paper, we outline an efficient system for detection of dim small targets that consists of three main parts: clutter rejection, track-before-detect (TBD), and detection subsystems. Detection and tracking of dim targets requires accumulation of sensor signal in time in order to resolve the target. There exist a number of powerful methods for detecting small low observable targets with sta...

متن کامل

An approximation algorithm and FPTAS for Tardy/Lost minimization with common due dates on a single machine

This paper addresses the Tardy/Lost penalty minimization with common due dates on a single machine. According to this performance measure, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Initially, we present a 2-approximation algorithm and examine its worst case ratio bound. Then, a pseudo-polynomial dynamic programming algorithm is de...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

Minimizing a General Penalty Function on a Single Machine via Developing Approximation Algorithms and FPTASs

This paper addresses the Tardy/Lost penalty minimization on a single machine. According to this penalty criterion, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Besides its application in real world problems, Tardy/Lost measure is a general form for popular objective functions like weighted tardiness, late work and tardiness with reje...

متن کامل

Parameter Adjustment for a Dynamic Programming Track-before-Detect-Based Target Detection Algorithm

This paper addresses the problem of tracking a dim moving point target in a sequence of IR images. The proposed tracking system, based on the track-before-detect (TBD) approach, is designed to track and detect dim maneuvering targets from an image sequence under low SNR conditions; a dynamic programming algorithm (DPA) is used to process the frames in the sequence. This paper deals with the pra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012